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annual water yield (in m yr11).
The root-mean-square error was 12% of

average riverine nitrate flux and the serial
correlation of residuals was not statistically
significant (P*0.05) for lags 1–12. The
results of Monte Carlo simulations for the
1980–98 period suggested that 95% of the
estimation uncertainty was due to fitting
the regression coefficients and 5% was due
to uncertainty in components of NANI (for
details, see supplementary information).
The 95% confidence interval for the mean
estimated nitrate flux for an individual 
year was 515%. 

Our model suggests that changes in
NANI to the Mississippi River basin 
influence riverine nitrate flux for the 
succeeding 2–9 years, although the greatest
impact tends to be during the first 2–5
years. Furthermore, the observed exponen-
tial relationship suggests that small changes
in NANI may lead to relatively large changes
in riverine nitrate flux. This pattern may 
be a consequence of NANI exceeding 
the capacity of terrestrial and/or aquatic 
systems to assimilate nitrogen input. 

Calculations using our equation, and
made on the basis of the observed annual
water yields in 1960–98, suggest that a
14.2% reduction in NANI would have led
to a 33% reduction in annual average 
riverine nitrate flux at St Francisville in
1980–98 (Fig. 1). This reduction in fertil-
izer use would have been most effective in
years with the greatest water yield (and
therefore the greatest nitrate flux). In years
with low water yield, however, there was no
statistical difference between estimates of
mean nitrate flux with or without a 14.2%
reduction in NANI.

The 14.2% reduction in NANI could
have been accomplished by a 12% reduction
in nitrogen input from fertilizer if crop
yields remained constant. A small reduction
in such nitrogen input is unlikely to have
reduced crop yields significantly, if at all.
Crop yields tend to approach an economic
optimum in an asymptotic manner as rates
of fertilizer application increase9,10. More-
over, data concerning usage of nitrogen 
fertilizer suggest that there is a tendency
among farmers to apply more than is 
necessary to achieve economically optimal
production11–13. 

Our findings indicate that achieving
conservation goals for the Gulf of Mexico
may require less reduction in fertilizer use
than has been estimated from simulation
modelling of edge-of-field nitrogen losses
and assumptions of constant in-stream
denitrification loss14. By using the available
data concerning riverine nitrate transport,
our analysis incorporates the effects of 
variation in in-stream denitrification.

The relationship between riverine
nitrate flux in the Mississippi basin and
NANI may continue to change as a result of
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the specialized face-processing system in the
sheep brain offers advantages for long-term
recognition of many individuals that are
similar to those for humans. In humans,
analogous brain regions and neural circuits
are activated equivalently when we see or
form mental images of the faces of specific
individuals9. This suggests that sheep may
be capable of using the same system to
remember and respond emotionally to
individuals in their absence. 
Keith M. Kendrick, Ana P. da Costa, Andrea
E. Leigh, Michael R. Hinton, Jon W. Peirce
Laboratory of Cognitive and Developmental
Neuroscience, Babraham Institute, 
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of NANI to a drainage basin, an average of
about 0.25 units are transported to coastal
waters, with the other 0.75 units being 
converted to gaseous compounds or stored
in soil or groundwater. 

Relatively little attention has been paid
to temporal variation in the relationship
between NANI and riverine nitrogen flux
for particular river basins, which is essen-
tial for developing effective protection
strategies for estuary and coastal marine
ecosystems. We have focused on the tem-
poral variation of nitrate flux in the lower 
Mississippi River in 1960–98, during
which period a 2.5-fold increase in nitrate
concentration accounted for almost all of
the increase in total nitrogen concen-
tration in the river7. A positive trend in
precipitation during this period also 
produced a 30% increase in water yield (or
stream flow), which probably enhanced
nitrate delivery.

In 1960–98, NANI to the Mississippi
River basin increased by roughly 80%. 
In the 1960s, riverine nitrate flux was 8% 
of NANI; by the 1990s, this figure had
increased to 18%. The trend in the ratio of
riverine nitrate flux to NANI is statistically
significant and the ratio is significantly 
correlated with discharge and NANI
(P*0.001). 

By combining and adapting two earlier
models that related terrestrial nitrogen
input to riverine nitrogen flux5,8, we devel-
oped the following model, which accounts
for 95% (P*0.001) of the variation in
annual nitrate flux in the lower Mississippi
River, including the Old River ouflow, in
1960–98:

NLM40.662W 0.932e(0.132NANI2–5&0.062NANI6–9)

where NLM is the annual nitrate flux (in 
kg N ha11 yr11), NANI2–5 is the average
annual net anthropogenic nitrogen input
during the previous 2–5 years (in kg N ha11

yr11), NANI6–9 is the average annual net
anthropogenic N input during the previous
6–9 years (in kg N ha11 yr11) and W is the

Eutrophication

Nitrate flux in the
Mississippi River

Increased delivery of biologically available
nitrogen to estuaries and coastal oceans
in recent decades has been linked to

eutrophication and seasonal hypoxia in the
northern Gulf of Mexico1,2 and elsewhere3,4.
We have developed a model that accounts
for 95% of annual variation in delivery 
of nitrate to the Gulf of Mexico by the 
Mississippi River in 1960–98. Retrospective
analysis indicates that this nitrate flux could
have been reduced by 33% if the use of
nitrogen-containing fertilizer in the Missis-
sippi River basin had been cut by 12%.

Across a wide range of temperate river
systems, riverine nitrogen flux has been 
correlated with net anthropogenic nitrogen
input (NANI) to the drainage basin. NANI
is defined as nitrogen input from fertilizer
and by fixation and atmospheric deposition
of oxidized nitrogen, minus nitrogen
exported in food and feed5,6. For each unit

Figure 1 Observed nitrate flux in the lower Mississippi River,

including the Old River outflow, in 1955–98 (diamonds) and

nitrate flux estimated using our equation (see text; black line). The

thick red line shows the estimated average nitrate flux to the Gulf

of Mexico if nitrogen input from fertilizer were to be reduced by

12%, assuming no reduction in crop yields. Thin red lines define

the 95% confidence interval for the mean of each annual 

estimate. Flux values before 1960 were not included in the 

regression analysis because data concerning crop and livestock

production data before 1950, which would be needed to calculate

NANI6–9, are not readily available.
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modifications in the river, in climate and in
nitrogen-management practice. Continued
monitoring of riverine nitrogen and NANI
will refine our understanding of nitrogen
dynamics in river basins and will facilitate
adaptive management of conservation poli-
cies and programmes. 
Gregory F. McIsaac*, Mark B. David*,
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Neural-network models

Predicting spontaneous
recovery of memory

Long after a new language has been
learned and forgotten, relearning a few
words seems to trigger the recall of

other words. Neural-network models1–3

indicate that this form of spontaneous
recovery may result from the storage of dis-
tributed representations, which are thought
to mediate human memory. Here we use a
psychomotor learning task to show that a
corresponding effect of spontaneous mem-
ory recovery occurs in human subjects. 

Spontaneous recovery is a generic charac-
teristic of systems in which associations 
are distributed over many processing 
units (neurons, for example)1–3. In neural-
network models, after learning a set of 
associations, forgetting can be induced by
adding noise to connections between 
‘neurons’. As every association depends on 
all connections, relearning a subset of 
these associations forces all connections
towards their original values, resulting in 

improved performance on non-relearned
associations; this form of spontaneous recov-
ery is also known as the transfer effect1,2.

The task we used to test for a transfer
effect in humans involved learning to type
on a keyboard on which letters had been
rearranged. In each of three sessions, 
subjects (n412) were presented with an
upper-case letter on each trial, and were
required to press the corresponding 
keyboard letter. Letters were presented in
random order, with an inter-trial interval 
of 1 second. Twenty-four letters were 
divided into three disjoint subsets (such 
as A4{ENLHUBWK}, B4{TORCFPYJ},
C4{AISDMGVX}). Subjects learned two
intermixed subsets (A and B) for 480 trials
(session 1). After 48 hours, subset A was
relearned for 80 trials (session 2). Immedi-
ately after session 2, subjects were tested for
80 trials on  subset B (session 3). The proto-
col in all three sessions was identical. 

We predicted that, after initially learning
subsets A and B (session 1), relearning 
subset A (session 2) would facilitate per-
formance on the non-relearned subset B
(session 3). Accordingly, we compared 
reaction times for subset B (session 3) in
this transfer condition with those in a 
control condition. In the control condition,
instead of relearning subset A in session 2,
subjects learned a ‘new’ subset, C.

Each subject participated in the transfer
and control conditions (Fig. 1). These two
conditions used different keyboard layouts,
and different letters in subsets A, B and C.
Results for the two conditions were
obtained a week apart, with a fully counter-
balanced design. The skew of reaction-time
(RT) distributions was reduced by taking
logarithms (designated as RTlog). We binned
each subject’s RTlog values (16 trials per bin
in session 1; 8 trials per bin in sessions 2
and 3) and analysed bin means using
repeated-measures two-factor MANOVAs
(condition and bin number); we then used
linear contrasts to test specific hypotheses,
denoted FLC. Response accuracy was not 
significantly less than 100% in any session.
After learning subsets A and B, RTlog for
subset B (session 3) was significantly 
smaller after relearning subset A than after
learning subset C (mean reaction times,
0.990 s and 1.123 s, respectively; Fig. 1c).

It is possible that this difference was
caused by increased reaction time in the 
control condition (for example, through
‘interference’ from learning new items in
subset C), rather than by reduced reaction
time in the transfer condition. However, 
two findings are inconsistent with this inter-
pretation. First, comparison of performance
with and without learning of new items 
(that is, testing subset B in the control 
condition and relearning subset A in the
transfer condition) shows no difference
(FLC(1)40.821, P40.352). Second, in the
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transfer condition, RTlog during session 3 was
significantly smaller than during session 2
(FLC(1)43.647, P40.036). This suggests
that relearning of subset A in session 2
involved implicit relearning of subset B.

This investigation was stimulated by
mathematical analyses of neural-network
models. Our findings are consistent with a
form of spontaneous recovery (the transfer
effect) and support a computational
account of learning and relearning in
human memory. Moreover, the transfer
effect may contribute to the savings that are
observed when forgotten associations come
to be relearned4.
James V. Stone*, Nicola M. Hunkin†, 
Angela Hornby*
*Department of Psychology and †Academic
Neurology Unit, Sheffield University, 

Figure 1 Reaction time (RTlog) plotted against trial number for

three different experimental sessions (solid lines, transfer condi-

tion; dashed lines, control condition; error bars, standard errors of

bin means; see text). a, Session 1: learning intermixed letter 

subsets A and B. RTlog decreases as letter positions are learned

(F (29,290)417.44, P*0.001), with no effect of condition

(P40.560) and no condition2trial interaction (P40.697). 

b, Session 2: relearning subset A (transfer condition), and 

learning new subset C (control condition). RTlog during relearning

of subset A was less than RTlog during learning of subset C

(FLC(1)434.298, P*0.001). c, Session 3: testing subset B. RTlog

for subset B was significantly smaller after relearning subset A

(transfer condition) than after learning subset C (control condition)

(FLC(1)47.930, P40.006).
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